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1. Light Curve Analysis

1.1. Light curve modeling

To find the best fit to the light curve we developed a modeling package called EXOMOP1

that uses the analytic equations of Mandel & Agol (2002) to generate a model transit,

the Levenberg-Marquardt (LM) non-linear least squares minimization algorithm (Press et

al. 1992) to find the best fit, the bootstrap Monte Carlo technique (Press et al. 1992) to

calculate robust errors of the LM fitted parameters, a Differential Evolution Markov Chain

Monte Carlo (DE-MCMC) (ter Braak 2006) analysis to find the best fit and associated

errors, and used both the residual permutation (rosary bead) method (Southworth 2008)

and time-averaging method (Pont 2006) to access the importance of red noise in both fitting

methods.

We modeled the transit with the DE-MCMC using 20 chains and 206 links. The Gelman-

Rubin statistic (Gelman & Rubin 2002) was used to ensure chain convergence, as outlined

in Ford (2006). We used the Metropolis-Hastings sampler and bayesian inference to charac-

terize the uncertainties because it accounts for non-Gaussian errors and covariances between

parameters. Our DE-MCMC model was derived from EXOFAST by Eastman, Gaudi &

Agol (2013).

During the analysis, the time of mid-transit (Tc) and planet-to-star radius (Rp

R∗

) were

left as free parameters. Eccentricity (e), argument of periastron (ω), the quadratic limb

darkening coefficients (µ1 and µ2), and the orbital period (Pb) of the planet were fixed to

the values listed in Table 2. In addition, a linear least squares fit was found for the out

of transit baseline and was divided out of our transit before modeling. The linear(µ1) and

quadratic(µ2) limb darkening coefficients in each filter were taken from Claret (2011) using

the stellar parameters (Teff= 5340 K, log g= 4.452 (cgs), [Fe/H ]=0.450) from Torres (2008).

We used the fitted parameters from either the LM best-fit model or DE-MCMC best-fit model

that produced the lowest scatter in the respective residuals (Transit–Best-fit model). The Rp

R∗

and Tc parameters obtained from the EXOMOP analysis and the derived transit durations

are summarized in Table 3.

To determine the error in the fitted parameters with the LM method we used the follow-

ing bootstrap procedure. In step (1), we obtained the best-fit light curves and parameters

from the LM non-linear least squares algorithm. In step (2), we multiply the formal errors

bars for each data point in the light curve by random Gaussian noise with a standard de-

1EXOMOP is avaialbe from http://uaastroclub.org/members/jake-turner/exomop/
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viation equal to the original error bars. In step (3), we add the error bars form step (2) to

the data. In step (4), we repeat step (1) to find a new best-fit light curve. This process was

repeated 10000 times to avoid small-number statistics. When all iterations are finished each

fitted parameter from step (4) is subtracted by the original best-fit value and a Gaussian

function is fit to the distribution. The standard deviations of the distributions are the 1

sigma uncertainties in the fitted parameters.

In the residual permutation method the best-fit model is subtracted from the data, the

residuals are then added to the data points. A new fit is found, and then the residuals

are shifted again, with those at the end wrapped around to the start of the data. In this

way, every new synthetic data set will have the same bumps and wiggles as the actual

data but only translated in time. Usually this process continues until the residuals have

cycled back to where they originated. We updated this procedure by allowing for the error

bars of the residuals to be taken into account. This is similar to step (2) in the bootstrap

procedure described above. This process was repeated 10000 times. This procedure results in

a distribution of fitted values for each parameter from which its uncertainty can be estimated

using the standard deviation of a Gaussian fit. For each fitted parameter we then defined

βres (the scaling factor relative to white noise using the residual permutation method) as

σboot/σres, where σboot are the error bars derived from the bootstrap Monte Carlo technique

and the σres are the error bars derived from the residual permutation method.

We implemented the time-averaging method in a similar fashion to that done by Winn

(2008). For each light curve we found the best-fitting model and calculated σor, the standard

deviation of the unbinned residuals between the observed and calculated fluxes. Next, the

residuals were binned into bins of N points and we calculated the standard deviation, σN , of

the binned residuals. In our analysis, N ranged from 1 to n/5, where n is the total number

of data points in each respective transit. We then used a LM non-linear least squares

minimization algorithm to find the RMS of red noise (σred) and the RMS of white noise

(σwhite) using the following equation from Pont 2006:

σN =

√

σ2

white

N
+ σred. (1)

The values for σwhite and σred for each transit can be found in Table [INSERT NUMBER].

Using σwhite and σred we estimated βtim, the scaling factor relative to white noise using the

time-averaging method, with the following equation from Carter & Winn (2009):

βtim =

√

1 +

(

σred

σwhite

)

. (2)

To get the final error bars for the fitted parameters we multiplied σboot by the largest β
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(either βtim or βres) from the residual permutation and time-averaging red noise calculations

to account for underestimated error bars due to red noise (Winn 2008). This was only done

if the largest β was greater than one. Finally, in cases where the reduced chi-squared (χ2

r)

of the data to the best-fit model was found to be greater than unity we multiplied the error

bars above by
√

χ2

r to compensate for the underestimated observational errors (Bruntt 2006;

Southworth 2007). The final error bars can be found in Table 2.
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